
3. daisy:320 (Fithen, William L.)

7. 349.html

8. Contrary to what this looks like, this is really a failure to catch an error, not a buffer overflow.

Handle All Errors Safely
William L. Fithen, Software Engineering Institute [vita3]

Copyright © 2005 Carnegie Mellon University

2005-10-03

Unhandled or incorrectly handled exceptions can introduce vulnerability.

Description

Error handling (or, more generally, "exception handling") is an essential aspect of reliability and security
and is frequently a source of vulnerabilities. An ''error'' is an internal state not expected to occur during
normal operation that, if not handled correctly, could lead to a failure to deliver the required service.
Error handling consists of detecting such internal states and performing the required reaction to such
events. The reaction might be some form of recovery such as a retry of a failed calculation.

In the case of errors that cannot be corrected, the Failing Securely7 principle councils one to take the
most conservative reaction. The required reaction may consist of a "graceful" exit with appropriate
notification of the failure to the calling procedure or program and to any components monitoring system
health. Frequently the called function's return value is used to indicate an error, but a failure might also
raise an exception, invoke a callback, or schedule a signal.

Successful error management also depends on the calling procedure recognizing and correctly reacting
to an error generated on a call. However, the calling procedure itself might not have sufficient context to
be able to handle the error in the way that is best for the system as a whole, especially in an object
oriented systems. Therefore, the calling procedure may pass the exception up to its own calling
procedure (perhaps with some additional context information) to improve the chances for successful
recovery from an error. At the highest level, every error must be dealt with appropriately or extreme
measure are required. The typical handler for unexpected top level exceptions is to terminate. But other
reactions are possible, such as complete reinitialization of the system.

An ignored error or an improper reaction to an error will likely generate an inconsistent or unanticipated
internal state in the calling program. "Unanticipated" implies that neither detection nor recovery is
available for such errors and that a vulnerability, whose exploitation can lead to a system failure or an
insecure state, may be possible [VU#7956328].

The mechanisms used to report errors can also induce vulnerabilities. In languages that support
exceptions, the evolution of a component may encourage the interception and silent suppression of new
classes of exceptions within the component in order to preserve the component's original API, since
raising or propagating new exceptions may require syntactical or semantic changes in calling code. The
suppression of such exceptions can produce unexpected results, which can lead to vulnerabilities of this
class. The prototypical case is the suppression of "checked" exceptions in Java.

Since error handling code typically deals with rare or infrequent events, it is not unusual for insufficient
effort to be devoted to developing such code and for thorough testing of error handling code to be
overlooked. This contributes to a lessening of reliability for the system as a whole and an increased
probability that a vulnerability related to error handling exists.

Handle All Errors Safely 1
ID: 338 | Versie: 5 | Datum: 21/04/06 10:06:31

daisy:320
349.html

1. http://www.sei.cmu.edu/about/legal-permissions.html

References

[VU-238678] Gennari, Jeff. Vulnerability Note VU#238678: The zlib compression library
is vulnerable to a denial-of-service condition.
http://www.kb.cert.org/vuls/id/238678 (2004).

[VU#331937] Finlay, Ian. Vulnerability Note VU#331937: BEA WebLogic Server
"ResourceAllocationException" exception may disclose user password.
http://www.kb.cert.org/vuls/id/331937 (2003).

[VU#795632] Manion, Art. Vulnerability Note VU#795632: MIT Kerberos 5 ASN.1
decoding functions insecurely deallocate memory (double-free).
http://www.kb.cert.org/vuls/id/795632 (2005).

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Velden

Naam Waarde

Copyright Holder SEI

Velden

Naam Waarde

is-content-area-overview false

Content Areas Knowledge/Guidelines

SDLC Relevance Implementation

Workflow State Publishable

Handle All Errors Safely 2
ID: 338 | Versie: 5 | Datum: 21/04/06 10:06:31

http://www.kb.cert.org/vuls/id/238678
http://www.kb.cert.org/vuls/id/331937
http://www.kb.cert.org/vuls/id/795632
http://www.sei.cmu.edu/about/legal-permissions.html

